Identification of the key morphological sweetpotato weevil resistance predictors in Ugandan sweetpotato genotypes using correlation and path-coefficient analysis
| dc.contributor.author | Florence Osaru | |
| dc.contributor.author | Jeninah Karungi | |
| dc.contributor.author | Roy Odama | |
| dc.contributor.author | Doreen Murenju Chelangat | |
| dc.contributor.author | Paul Musana | |
| dc.contributor.author | Milton Anyanga Otema | |
| dc.contributor.author | Bonny Oloka | |
| dc.contributor.author | Paul Gibson | |
| dc.contributor.author | Richard Edema | |
| dc.contributor.author | Reuben Tendo Ssali | |
| dc.contributor.author | George Craig Yencho | |
| dc.contributor.author | Benard Yada | |
| dc.date.accessioned | 2025-02-18T05:43:21Z | |
| dc.date.available | 2025-02-18T05:43:21Z | |
| dc.date.issued | 2023-03-16 | |
| dc.description.abstract | Sweetpotato weevils (SPWs) can cause up to 100% yield losses in sweetpotato (Ipomoea batatas). Nevertheless, there has been limited success in breeding for SPW resistance globally. This is attributed partly to difficulty in screening for resistance because resistance to the SPW is complex and is mediated by several resistance indicators. Measuring all these resistance indicators is costly and time consuming. To enhance efficiency in selection for SPW resistance, there is need to profile and identify key resistance indicators. Potentially, this will better enable breeders to timely and precisely select for SPW resistance. The objective of this study was to identify the most efficient morphological resistance indicators against SPW. Thirty sweetpotato genotypes that varied in resistance to SPW comprising local collections, released varieties, and breeding lines were evaluated at three locations for two seasons in Uganda using an alpha lattice design. Data were collected on storage root yield, SPW root and stem damage, and weevil resistance indicators such as vine vigor (VV), ground cover (GC), vine weight (VW), storage root neck length (NL), latex content, cortex thickness (CT), and dry matter content (DM). Genotype means for all mea- sured traits varied significantly except for CT. Negative relationships were observed between SPW root damage and GC, VW, CT, VV, NL, and DM. However, path coefficient analysis showed storage root NL (direct effect of −0.43, p < 0.001) as the most important morphological resistance indicator. Therefore, NL could be the most | |
| dc.description.sponsorship | the Bill & Melinda Gates Foundation (BMGF) through the PEARL I: Biochemistry-Based Selection and Development of Nutrient Rich, Weevil Resistant Sweetpotato Varieties in Uganda Sweetpotato project, Grant/Award Number: OPP1112515 | |
| dc.identifier.uri | 10.1002/csc2.20915 | |
| dc.identifier.uri | http://104.225.218.216/handle/123456789/104 | |
| dc.language.iso | en | |
| dc.publisher | Crop Science | |
| dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | en |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | |
| dc.subject | NaCRRI | |
| dc.subject | National Crops Resources Research Institute | |
| dc.subject | NaSARRI | |
| dc.subject | National Semi-Arid Resources Research Institute | |
| dc.subject | SPW | |
| dc.subject | sweetpotato weevil | |
| dc.subject | SSA | |
| dc.subject | sub-Saharan Africa. | |
| dc.title | Identification of the key morphological sweetpotato weevil resistance predictors in Ugandan sweetpotato genotypes using correlation and path-coefficient analysis | |
| dc.type | Article |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Identification_of_the_key_morphological_sweetpotat.pdf
- Size:
- 760.33 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed to upon submission
- Description: